LogoLogo
ISTVSConferences
  • 11th Asia-Pacific Regional Conference of the ISTVS
  • Details
  • Program
  • Submissions
  • Registration
  • Sponsors
  • Papers of the 11th Asia-Pacific Regional Conference of the ISTVS
    • 0303 / Composite Beam Tests with Closed Cell Polyurethane and Aluminum Foam
    • 0356 / Design and Simulation Analysis of Intelligent Suspension for Manned Lunar Rover
    • 0861 / Review of the Reconfigurable Wheel-Tracked System
    • 0963 / A Wheel and Vehicle Mobility Index Based on Traction and Velocity...
    • 1128 / Semi-Active Reinforcement Learning Suspension Control for the Off-Road Vehicles
    • 1491 / Design and Verification of a Creeping Mars Rover
    • 1534 / Foothold Selection Considering Constraint and Slippage Evaluation for Legged Robots
    • 1561 / Prominent Problems and Thoughts of “Paddy Soil-Terrain Machine System”...
    • 1655 / Modeling of Lunar Rover Vehicle Wheel-Soil Interaction Using Fem-Dem Method
    • 2034 / A Comprehensive Lumped Parameter Approach for the Dynamic Simulation...
    • 2149 / Investigation of the Shear Stress Dynamics on Silty Loam Soil and Measurement...
    • 2190 / Tyre Parameterization Tests: Dynamic vs. Static
    • 2539 / Model Predictive Control of a Robot Driven Vehicle for Testing of Advanced Driver...
    • 2632 / Energy Consumption Analysis of Door Opening with a Mobile Manipulator...
    • 2643 / An Improved Simultaneous Localization and Mapping Method Base on LeGO-LOAM and Motion Compens
    • 3351 / Benchmarking of Compression Testing Devices in Snow
    • 4054 / Field Validation of Egress Process for Planetary Rover
    • 4243 / Soil Compaction Monitoring Technique Using Deep Learning
    • 4260 / The Running Gear Construction Impact on Obstacles Overcoming by Light High-Mobility UGV
    • 4409 / Design of Self-Driving Bulldozer System
    • 4744 / Terrain Classification Using Mars Raw Images Based on Deep Learning Algorithms...
    • 4774 / Steadily Learn to Drive with Virtual Memory
    • 4782 / Experimental Study of Track-Soil Interactions of the Steering Performance of Tracked...
    • 4812 / Multi-Fidelity Machine Learning Modeling for Wheeled Locomotion on Soft Soil
    • 4827 / Introducing Polibot: A High Mobility Tracked Robot with Innovative Passive Suspensions
    • 5060 / Bionic Quadruped Robot for Mars Surface Exploration
    • 5408 / Ride Comfort Comparison Between Suspension Modes: Input Towards Designing Difference...
    • 5800 / Interaction Modeling and Dynamic Control Strategy for C-Shaped Leg with Sandy Terrain...
    • 5979 / Research on Drag Reduction Performance of Sliding Plate of Rice Direct Seeding Machine...
    • 6174 / Factors Affecting Bevameter Soil Characterization
    • 6316 / Perceptive Locomotion of Legged Robot Coupling Model Predictive Control and Terrain Mapping
    • 6718 / Research on Vehicle Running Performance on Paved Roads Covered with Falling Volcanic Ash
    • 6796 / Nonparametric Terrain Estimation Based on the Interaction Simulation Between Planetary...
    • 7018 / A Review of Modeling and Validation Techniques for Tire-Deformable Soil Interactions
    • 7092 / A Time Domain Passivity Controller for Teleoperation of Four Wheeled Differential...
    • 7199 / Vehicle Dynamic Factor Characterized by Actual Velocity and Combined Influence...
    • 7233 / Study of Passive Steering Mechanism for Mars Surface Exploration Rovers
    • 7399 / Tire-Soil Tangential Force Reinforcement Learning Modeling
    • 7878 / A Method for Fast Obtaining of Soil Shear Strength Index Based on Dem Free-Fall Cone...
    • 8131 / Parameters Calibration of Red Clay Soil in Hilly Area of Southwest China for Discrete...
    • 8349 / The Effect of Integrating a Bio-Inspired Convex Structure with a Low-Surface Energy...
    • 8654 / Construction of a Soil Clods Recognition Bench-Scale Experiment for Discrete Element...
    • 8658 / Investigation of the Relationship between the Cone Index and the Physical and...
    • 9352 / 3D-DEM Simulation and Post-Process Method of Wheel-Terrain Interaction for Planetary Rovers
    • 9768 / Design and Traction Performance Test of Bionic Paddy Wheel Based on Cattle Hoof
    • 9913 / Acquisition of Flipper Motion in Step-Climbing of Tracked Robot Using Reinforcement Learning
  • Abstract-only submissions
  • Statement on Publication Ethics and Malpractice
Powered by GitBook

© International Society for Terrain-Vehicle Systems :: www.istvs.org

On this page
  1. Papers of the 11th Asia-Pacific Regional Conference of the ISTVS

5979 / Research on Drag Reduction Performance of Sliding Plate of Rice Direct Seeding Machine...

Paper presented at the 11th Asia-Pacific Regional Conference of the ISTVS

Previous5800 / Interaction Modeling and Dynamic Control Strategy for C-Shaped Leg with Sandy Terrain...Next6174 / Factors Affecting Bevameter Soil Characterization

Last updated 2 years ago

Title: Research on Drag Reduction Performance of Sliding Plate of Rice Direct Seeding Machine Based on Non Smooth Structure of Loach Surface

Authors: Hongchang Wang, Zhen Jiang, Kaiquan Ding, Guozhong Zhang, Abouelnadar Salem, and Yuan Gao

Abstract: Sliding plate was the key soil-engaging component of rice direct seeding and planting machinery. It has the problems of large sliding resistance and serious soil adhesion. which has a serious negative impact on the operation efficiency and quality of rice planting machinery. Reducing the soil adhesion and resistance between sliding plate and soil can significantly improve the operation effect of the whole machine and reduce power consumption. Loach moves freely and flexibly in the mud and has highly efficient lubrication and drag reduction effects. The movement state of sliding plate was similar to that of loach, as well as the working environment and conditions. Therefore, the sliding plate of rice direct seeding machine was selected as the research object and the loach as the bionic prototype. The macroscopic and microscopic structure characteristics of the scales were observed, the results showed that the body surface of the loach was covered by scales, and the scales had a ridged non-smooth structure. The simulation analysis of the drag reduction performance of the non-smooth structure based on Fluent was carried out, the results show that the maximum drag reduction rate was 2.55% at the speed of 1m/s. The bionic sliding plate of rice direct-seeding machine was constructed based on the non-smooth structure of loach body surface, and its working performance was simulated and analyzed. The single factor test results show that at the speed of 1m/s, the drag reduction rate of ribbed height in the range of 3.5mm to 4.5mm was relatively high, the drag reduction rate of ribbed width in the range of 4mm-5mm was relatively high; the drag reduction rate was relatively high when the distance between ribs was in the range of 4mm5mm. The results of orthogonal test show that the order of primary and secondary factors of bionic structure parameters affecting drag reduction rate was ribbed spacing > ribbed width > ribbed height. The optimal parameter combination was ribbing height 4mm, ribbing width 4.5mm, ribbing spacing, and the optimal drag reduction rate was 4.21%. The results of this study can provide theoretical support for bionic design of soil engaging components of rice planting machinery in wet and soft paddy field.

Order the full paper:

ISTVS members: receive three papers per year as part of your membership via the ISTVS Member Portal:

https://doi.org/10.56884/KUAL5071
https://www.istvs.org/proceedings-orders/paper
https://istvs.knack.com/member-portal/