9768 / Design and Traction Performance Test of Bionic Paddy Wheel Based on Cattle Hoof

Paper presented at the 11th Asia-Pacific Regional Conference of the ISTVS

https:/doi.org/10.56884/OTPF6196

Title: Design and Traction Performance Test of Bionic Paddy Wheel Based on Cattle Hoof

Authors: Lan Li, Jing Li, Baofeng Xie, Fei Lin, and Long Xue

Abstract: In order to improve the traction performance of the micro-tiller wheel on the paddy soil surface, a bionic paddy wheel was designed with a cattle hoof as the bionic prototype, and its diameter and wheel width were 0.46 m and 0.08 m, respectively. The traction performance test was carried out in a soil bin test-bed with a moisture content of 36 %. The vertical loads were 82.57 N, 131.40 N and 179.42 N, respectively. The driving speeds were 0.3 m/s, 0.5 m/s and 0.7 m/s, respectively. The drawbar pull was in the range of 10 – 120 N. The results showed that at the driving speed of 0.7 m/s, with the increase of the vertical load, the driving torque and the drawbar pull are increasing. The vertical load has a significant effect on the change of driving torque and maximum drawbar pull. Under the vertical load of 179.42 N and different driving speeds, when the slip ratio is less than 0.37, the efficiency coefficient begins to grow rapidly, and the greater the driving speed is, the greater the growth rate is. When the slip ratio is about 0.37, the efficiency coefficient reaches the maximum and then begins to decrease. Driving speed has a significant effect on the maximum efficiency coefficient of wheels. This paper can provide a reference for the traction performance of the micro-tiller wheel on the paddy soil surface and the design of the new bionic paddy wheel.

Order the full paper: https://www.istvs.org/proceedings-orders/paper

ISTVS members: receive three papers per year as part of your membership via the ISTVS Member Portal: https://istvs.knack.com/member-portal/

Last updated

© International Society for Terrain-Vehicle Systems :: www.istvs.org